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UCLA: Math 32B Week 4 Worksheet Spring 20

1. (a) Find a change of coordinates map G that takes the unit square [0, 1] x [0, 1] to the parallelogram
with vertices (0,0), (2,1),(1,2)(3, 3).

(b) Find the Jacobian of G.

(c) Find a change of coordinates map G’ that takes the unit square [0,1] x [0, 1] to the parallelogram
with vertices (2,1), (4,2), (3,3), (5,4).

(d) Find the Jacobian of G’ and give a geometric explanation for the similarity between the Jacobian
of G and that of G’.

3
2. Consider the region D defined by 1 < 22 —¢y?> <4 and 0 <y < g In this problem you’ll set up an

integral to compute // eV dA.
D

Consider the change of coordinates G(u,v) = (% + QE, g — 2£) Recall from class that the inverse of
v v
this coordinate change is given by G~ (z,y) = (2* — y*, z + y)
(a) Find a region R of the uv-plane so that G : R — D is a change of coordinates map (so G is onto
and one-to-one on the interior of R). Hint: Start by finding 4 curves in the uv-plane that map to

the 4 curves forming the boundary of D.

(b) Give an iterated integral in uv-coordinatees to compute / / e v dA (No need to compute the
D

actual integral, but it is an integral you can compute).

3. Consider the region of the part of the first quadrant D defined by 1 < z? +y* <4 and 1/10 < 2y < 1/2
and y > z. There is a change of coordinates G that takes the rectangle [1,4] x [1/10,1/2] in the uv-plane
to D, and the inverse of this change of coordinates is given by G~ (z,y) = (22 + 2, zy).
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UCLA: Math 32B Week 4 Worksheet Spring 20

(a) What is the absolute value of the Jacobian of G™*? (It should be a function of  and y). Pay
attention to signs!

(b) Compute // y? — 22 dA
D

(c) Bonus problem: Note that the system of inequalites 1 < 2% + y* < 4 and 1/10 < xy < 1/2 defines
four different regions of the plane. Each of these regions can be described by a change of coordinates
G that takes the rectangle [1,4] x [1/10,1/2] in the uv-plane to the region where again inverse of
this change of coordinates is given by G~'(z,y) = (2 + v, zy), but for each of these regions G
itself has a different formula. Find all 4 formula for G and say which of these four regions goes with
which formula.
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