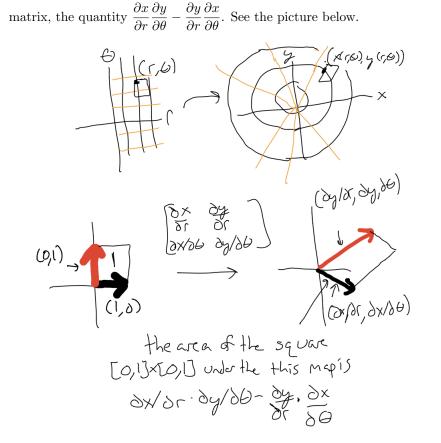
1. We showed that the circles
$$(x - a)^2 + y^2 = a^2$$
 and $x^2 + (y - a)^2 = a^2$ in polar coordinates as $r = a$.
Find a description of the circles $(x - a)^2 + y^2 = a^2$ and $x^2 + (y - a)^2 = a^2$ in polar coordinates. (What
if a is negative?) $x = r + con \partial_y + r + x + xh^2 \partial = a^2$
 $r^2 + co^2 \partial - 2ar + cor (\partial + r^2 + m^2 \partial = a^2)$
 $r^2 + co^2 \partial - 2ar + cor (\partial + r^2 + m^2 \partial = a^2)$
 $r^2 + cor^2 \partial - 2ar + cor (\partial + r^2 + m^2 \partial = a^2)$
 $r^2 + cor^2 \partial - 2ar + cor (\partial + r^2 + m^2 \partial = a^2)$
 $r^2 + cor^2 \partial - 2ar + cor (\partial + r^2 + m^2 \partial = a^2)$
 $r^2 + cor^2 \partial - 2ar + cor (\partial + r^2 + m^2 \partial = a^2)$
 $r = 2a + cor (\partial + r^2 + m^2 \partial = a^2)$
 $r = 2a + cor (\partial + r^2 + m^2 \partial = a^2)$
 $r = 2a + cor (\partial + r^2 + m^2 \partial = a^2)$
 $r = 2a + cor (\partial + r^2 + m^2 \partial = a^2)$
 $r = 2a + cor (\partial + r^2 + m^2 \partial = a^2)$
 $r = 2a + cor (\partial + r^2 + m^2 \partial = a^2)$
 $r = 2a + cor (\partial + r^2 + m^2 \partial = a^2)$
 $r = 2a + cor (\partial + r^2 + m^2 \partial = a^2)$
 $r = 2a + cor (\partial + r^2 + m^2 \partial = a^2)$
 $r = 2a + cor (\partial + r^2 + m^2 \partial = a^2)$
 $r = 2a + cor (\partial + r^2 + m^2 \partial = a^2)$
 $r = 2a + cor (\partial + r^2 + m^2 \partial = a^2)$
 $r = 2a + cor (\partial + r^2 + m^2 \partial = a^2)$
 $r = 2a + cor (\partial + r^2 + m^2 \partial = a^2)$
 $r = 2a + cor (\partial + r^2 + m^2 \partial = a^2)$
 $r = 2a + cor (\partial + r^2 + m^2)$
 $r = 2a + cor (\partial + r^2 + m^2)$
 $r = 2a + cor (\partial + r^2 + m^2)$
 $r = 2a + cor (\partial + r^2 + m^2)$
 $r = 2a + cor (\partial + r^2 + m^2)$
 $r = 2a + cor (\partial + r^2 + m^2)$
 $r = 2a + cor (\partial + r^2 + m^2)$
 $r = 2a + cor (\partial + r^2 + m^2)$
 $r = 2a + cor (\partial + r^2 + m^2)$
 $r = 2a + cor (\partial + r^2 + m^2)$
 $r = 2a + cor (\partial + r^2 + m^2)$
 $r = 2a + cor (\partial + r^2 + m^2)$
 $r = 2a + cor (\partial + r^2 + m^2)$
 $r = 2a + cor (\partial + r^2 + m^2)$
 $r = 2a + cor (\partial + r^2 + m^2)$
 $r = 2a + cor (\partial + r^2 + m^2)$
 $r = 2a + cor (\partial + r^2 + m^2)$
 $r = 2a + cor (\partial + r^2 + m^2)$
 $r = 2a + cor (\partial + r^2 + m^2)$
 $r = 2a + cor (\partial + r^2 + m^2)$
 $r = 2a + cor (\partial + r^2 + m^2)$
 $r = 2a + cor (\partial + r^2 + m^2)$
 $r = 2a + cor (\partial + r^2 + m^2)$
 $r = 2a + cor (\partial + r^2 + m^2)$
 $r = 2a + cor (\partial + r^2 + m^2)$
 $r = 2a + co$



(d) What is the area enclosed by this ellipse?

(c) $x = ar \cos \theta, y = br \sin \theta$ $\frac{g_{\mu}}{hr} = a \cos \theta$ $\frac{g_{\mu}}{hr} = b \sin \theta$ $\frac{g_{\mu}}{hr} = -ar \sin \theta$ $\frac{g_{\mu}}{hr} = br \cos \theta$ $\left|\frac{g_{\mu}}{hr} - \frac{g_{\mu}}{hr}\right|_{\frac{g_{\mu}}{hr}} = abr \cos^{2} \theta - (-abr \sin^{2} \theta) = abr$ $g_{\mu} - \frac{g_{\mu}}{hr}$ (d) writing $G(r, \theta) = (ar \cos \theta, br \sin \theta)$, the ellipse is the mage of $[0, 1] \times [0, 2\pi]$ under G, so $A(ellipse) = \int_{ellipse} 1 de dy = \int_{G([0, 1] \times [0, 2\pi])} de dy$ by the change of variables $= \int_{[0, 1] \times [0, 2\pi]} |det T_{G}| de d\theta = 2\pi \int_{0}^{1} abr dr = \pi ab$