WORKSHEET DISCUSSION SECTION 1 DUE 4/5 AT MIDNIGHT

(1) Compute the following derivatives.

(a) Compute $\frac{d}{dx}x^n$ using the power rule. (b) Compute $\frac{d}{dx}(x^{n-1} \cdot x)$ using the product rule and the power rule for x^{n-1} . (c) Compute $\frac{d}{dx}(x^{n+1}/x)$ using the quotient rule and the power rule for x^{n+1} . (d) Compute $\frac{d}{dx}a^x$, where $a^x = e^{x \ln a}$. (e) Compute $\frac{d}{dx}x^x$, where $x^x = e^{x \ln x}$.

(b)
$$(n-1) x^{n-2} x + x^{n-1} \cdot 1 = n x^{n-1}$$

(c)
$$\frac{x \cdot (n+1) x^n - x^{n+1} \cdot 1}{x^2} = \frac{n x^{n+1}}{x^2} = n x^{n-1}$$

$$(d) \quad \frac{d}{dx}a^{x} = e^{x \ln a}(\ln a) = a^{x} \ln a$$

$$(e) \quad \frac{d}{dx} \chi^{\gamma} = e^{\kappa \ln \kappa} \left(1 \ln \kappa + \kappa \left(\frac{1}{\kappa} \right) \right) = \chi^{\kappa} \left(\ln \kappa + 1 \right)$$

(2) Consider the function $f : [0, 1] \to \mathbb{R}$, defined by $f(x) = x + x^2 + x^3 + x^4$. (a) Explain why f(a) = 2 for some 0 < a < 1.

(b) Give two reasons why f'(b) = 4 for some 0 < b < 1.

Hint: use the intermediate value theorem and mean value theorem.

(a)
$$f$$
 is continuous on $[0, 1]$ and $f(0) = 0$, $f(1) = 4$. Since $2 \in (0, 4)$,
the intermediate value than yields an $a \in (0, 1)$ s.t. $f(a) = 2$.
(b) 1. $f' = \frac{1 + 2x + 3x^2 + 4x^3}{3x^2 + 4x^3}$ so $f'(0) = 1$, $f'(1) = 10$. Since f' is
continuous, identical veasoring to the above shows that there is
 $a \ b \in (0, 1)$ s.t. $f'(b) = 4$.
2. f is continuous on $[0, 1]$ and differentiable in $(0, 1)$, so by the
mean value them., there is a $b \in (0, 1)$ s.t.
 $f'(b) = \frac{f(1) - f(0)}{1 - 0} = \frac{4 - 0}{1 - 0} = 4$.

- (3) A complex number is any number of the form z = x + iy, where x and y are real numbers, and $i = \sqrt{-1}$. We write x + iy = a + ib if x = a and y = b.
 - (a) Find the complex solutions of $x^2 + 4 = 0$
 - (b) Find the complex solutions of $x^2 + 2x + 2 = 0$.

Euler's formula is: $e^{i\theta} = \cos(\theta) + i\sin(\theta)$. It follows from comparing power series.

- (c) Show that $e^{i\pi} = -1$.
- (d) Expand both sides of $e^{i(x+y)} = e^{ix} \cdot e^{iy}$ to derive the formulas

 $\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$ and $\sin(x+y) = \cos(x)\sin(y) + \sin(x)\cos(y)$. This is one way to re-derive trig identities on the fly. (I never remember them.)

(a)
$$x = \pm 2i$$

(b) $x^{2} + 2x + 2 = 0 \implies x = \frac{-2 \pm \sqrt{(-2)^{2} - 4(1)(2)}}{2(1)} = -1 \pm \frac{1}{2}\sqrt{-4}$
 $= -1 \pm i$

(c)
$$e^{i\pi} = c\sigma \pi + i \sin \pi = -1 + \partial i = -1$$

(d) $e^{i\kappa} e^{i\gamma} = (c\sigma \pi + i \sin \kappa)(c\sigma \gamma + i \sin \gamma)$
 $= (c\sigma \pi \kappa \sigma \gamma - \sin \kappa \sin \gamma) + i(\sin \kappa \cos \gamma + \cos \kappa \sin \gamma)$
 $k e^{i(\kappa + \gamma)} = c\sigma \pi (\kappa + \gamma) + i \sin (\kappa + \gamma)$
so matching real k imaginary parts gives
 $c\sigma \pi (\kappa + \gamma) = c\sigma \pi \cos \gamma - \sin \kappa \sin \gamma$
 $\sin (\kappa + \gamma) = \sin \kappa \cos \gamma + c\sigma \pi + \cos \kappa \sin \gamma$
 $c\sigma \pi desired.$