Solh& ‘o
Math 31AL Worksheet
Tuesday, Oct 15 (Week 3)

1. Finish the following two standard definitions of f’(a), the derivative of a function f at
T = a, using limits:
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2. Let f(x) =522 + 3z + 4, and let a = —1.

(a) What is f(a), that is, f(—1)?
=5 -3+4 =H(

(b) Write down f(a + h), that is, f(—1+ h).
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(c) Use equation (2) above (the h — 0 version of the definition of the derivative),
with help from parts (a) and (b), to compute f'(—1).
(Note: You may use the Power Rule to check that your answer is correct, but you should compute
this derivative from the limit definition!)
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3. Let f(z) =1, and let a = 2.
(a) What is f(a), that is, f(2)7
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(b) Write down M, that is, M
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(c) Now use equation (1) above (the © — a version of the definition of the derivative),
with help from part (b), to compute f’(2).
(Note: You may use the Power Rule to check that your answer is correct, but you should compute
this derivative from the limit definition!)
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4. Compute the following limits:
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(c) Each of the previous two limits represents the instantaneous rate of change of a
function f(x) at some point z = a. For each one, what was the function f(z),
and at what point were you finding the instantaneous rate of change?
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5. Consider the following graph of a function f.

Y

N W e Ot O

—tt >
1 2 3 4 5 6 7 8

(a) On the graph above, sketch the tangent lines at z = 1, z =2, z = 3, x = 5, and
r="T.

(b) What is f'(5)? What is f'(7)?7 What is f'(2)?
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(c) For what range(s) of « values on the graph is f'(x) negative?
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(d) Explain why f’(6) does not exist, in two different ways: (1) by saying something
about the tangent line, and (2) using the limit definition of the derivative. (Hint:
Think about the one-sided limits, from the left and from the right.)
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(e) At what other value of x does f'(x) not exist?
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